
1 of 4

Abstract- The coherent signal averaging process requires an
accurate estimation of the fiducial point in all beats to be
averaged. The temporal cross-correlation between the detected
beat and a template beat is the typical alignment method used
with high-resolution ECG (HRECG) records. However, this
technique does not produce a precise fiducial mark in records
with high noise levels. In this study, we propose a new alignment
method based on the multi-scale cross-correlation between the
wavelet transforms of the template and the detected beat,
respectively. The wavelet and temporal methods were tested for
several simulated records corrupted with white noise and
electromyographic (EMG) noise of different RMS levels. The
results indicate that wavelet alignment method produces a lower
trigger jitter than the temporal method in all tests. We conclude
that the proposed alignment method can be used in records with
high noise levels, like those found in Holter HRECG systems.

Keywords - Alignment method, fiducial point, high-resolution
ECG signals, wavelet transform

I. INTRODUCTION

Coherent signal averaging is the classical method to
improve the signal-to-noise ratio of cardiac micropotentials
hidden in the background noise of high-resolution ECG
(HRECG) records. It is based on the hypothesis that the
signal of interest repeats itself with every beat and that the
noise is random and uncorrelated with the signal. The
resultant averaged signal is used to detect abnormal cardiac
micropotentials, like ventricular late potentials (VLP), which
are widely used to identify individuals at risk of ventricular
tachycardia and sudden cardiac death [1].

For the averaging process, a precise synchronization of
heartbeats is essential for the correct estimation of VLP. The
existence of trigger jitter in the synchronization process
causes a low-pass filtering effect in the averaged signal [2],
which seriously limits the subsequent detection of the
micropotentials. According to the standard [3], the trigger
jitter, measured with an artificial QRS complex, should be
less than 1 msec and ideally less than 0.5 msec. For this
reason, several alignment techniques have been proposed to
search for a precise fiducial point in HRECG records [4], [5],
[6], [7].  A complete comparative study of the performance of
the different alignment methods was presented in [8].

The alignment technique most widely used for HRECG
records is the temporal cross-correlation method, where each
incoming beat is matched to a pre-selected or averaged
template beat. This technique works well when the noise level
of the HRECG record does not exceed 20 µV RMS.
However, for higher noise levels, like those found in Holter

HRECG systems, the temporal cross-correlation does not
produce a precise fiducial mark [9]. Consequently the trigger
jitter increases in these situations.

In this paper, we propose a new alignment method based
on the multi-scale cross-correlation between the wavelet
transform (WT) of each detected beat and the WT of a pre-
selected template beat. The proposed method appears to work
better than the temporal cross-correlation method in records
with high noise levels. In this work, the algorithm is
compared with the traditional method for several simulated
records corrupted with stationary white noise and real EMG
noise of different RMS levels.

II. METHODOLOGY

A. Temporal Cross-Correlation Method

In this method, each previously detected incoming beat is
compared against a template beat in a temporal window that
includes at least the most rapidly changing part (upstroke and
downstroke) of the QRS complex of both beats [3]. The
template beat is usually chosen visually, by selecting a typical
QRS morphology. The method consists of the computation of
a cross-correlation coefficient sequence ρxy(l) between the
template beat and the time shifted detected beats in the
temporal window. The cross-correlation coefficient sequence
is defined as [10],
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where x(k) and y(k) are the values of the template and the
detected beat respectively at the k-th sampling instant; l is the
lag between the beat y, with respect to the template x; and N
is the total number of samples includes in the template, which
should  include at least 40 ms of the morphology of the QRS
complex. The correlation coefficient is computed at each
sampling instant lag over a sweep range, shifting the
incoming beat one sample point at time.

Figure 1 illustrates the cross-correlation process between
a template beat (Fig. 1a) and an incoming beat (Fig. 1b).  The
cross-correlation coefficient (Fig 1c) is maximum when the
incoming beat and the template are perfectly aligned. The
vertical dashed line represent the position of the fiducial
point.
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Fig. 1. Temporal cross-correlation method. (a) Template beat,
(b) Incoming detected beat, and (c) Crosscorrelation coefficient.

Vertical dashed line correspond to the position of the best alignment

Consequently, the fiducial point is defined as the position
of the maximum of ρxy, which is ideally equal to 1. In
practice, max(ρxy) < 1 due to noise. Figure 2 illustrates the
cross-correlation coefficient between a noisy beat and the
template beat for different RMS levels of white noise. It can
be seen that max(ρxy) decreases as noise level increases.
Likewise, it can be observed that the cross-correlation
function shows many local maxima when the noise level
increases. This makes correct localization of the fiducial point
difficult in high noise level records. Therefore, the trigger
jitter increases when the noise level of the record increases.

B. Wavelet Multi-Scale Cross-Correlation Method

In order to overcome the difficulties of the temporal
cross-correlation method, we propose a new alignment based
on the multi-scale cross-correlation between the wavelet
transform (WT) of the noisy incoming beat and the WT of the
template beat.

The wavelet transform (WT) of a signal x(t) is defined as
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where the ψ  (t) is the basic wavelet, and b and a (b,a ∈  ℜ ,
and a ≠ 0 ) are the translation and dilation parameters,
respectively. When a=2j (j=1,2,...), the WT is called dyadic
WT.

The basic wavelet used in this work was the quadratic
spline Mallat wavelet [11] with compact support and one
vanishing moment. The Fourier transform of this ψ  (t) is
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Fig. 2. Cross-correlation coefficent between a noisy beat and
the template beat for different RMS levels of white noise.

This wavelet transform can be implemented using the
Mallat algorithm [11] as a filter bank without decimators, as
it is illustrated in Figure 3. In this way, the discrete signal
x[n] is decomposed in a set of detail signals dx,i[n] and a set
of approximation signals ax,i[n]. The low-pass filter h[n] and
the high-pass filter g[n] have linear phase and give a signal
decomposition that is shift-invariant across the different
analysis scales. Due to these characteristics, this wavelet
function has been previously used for the detection of
characteristic points in ECG [12] and for the detection of the
QRS complex [13]. In previous work, we have used this
wavelet in order to estimate the QRS duration in healthy
people and in patients with high risk of ventricular
tachycardia, both in signal-averaged records and beat-to-beat
records [14],[15]. Unlike previous work, in this method we
use the approximation signals ax,i[n] with i=2,3,4 instead of
the detail signals dx,i[n], because the bandwidth of the former
corresponds approximately with the frequency range
containing the main portion of energy of the QRS complex to
be aligned.

g[n]G[z2] h[n]H[z2]

x[n]

g[n]G[z] h[n]H[z]

dX,1 aX,1Level 1

g[n]G[z4] h[n]H[z4]

dX,2 aX,2Level 2

dX,3 aX,3Level 3

Fig. 3. Filter bank approach of Mallat wavelet transform.



3 of 4

The proposed method computes the wavelet
approximation signals ax,i(k) of the template beat and ay,i(k) of
the incoming beats. Afterwards, we calculate separately for
each scale i the wavelet cross-correlation coefficient Pxy, i as
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Then we localize the alignment point at each scale as the
position of the maximum of Pxy,i . Finally, we compute the
fiducial point as the median value of the position of
max(Pxy,i) for i=2,3,4 . The selection of this parameter allows
a robust detection of the fiducial point in records with a high
noise level.
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Fig. 4. Wavelet multi-scale cross-correlation method. (a) Template
and incoming detected beats, (b-e) Approximation signals a1 to a4.
Vertical dashed line correspond to the best alignment in each scale.

Figure 4 illustrates the wavelet alignment method. The
template beat and a noisy beat are represented in Fig. 4a, and
its approximation signals a1 -  a4 in Fig. 4b-4e, respectively.
We observe that in the scales 3 and 4 the noise is well filtered
and the QRS complex morphology is preserved. The vertical
dashed line represents the position of the best alignment for
each scale.

III. RESULTS

The two alignment methods were evaluated by applying
them to a collection of 10 simulated high resolution ECG
(HRECG) records of 300 beats each. These signals were
corrupted separately with stationary white noise and real
EMG noise of different noise levels, ranging from 0 to 100
µV RMS in 5 µV step. Each record was constructed repeating
in time a real beat extracted from a real HRECG record

sampled at 1000 Hz. Five pathological and five normal QRS
complexes with different morphologies were selected in order
to construct the simulated records. The white noise used in
the simulation was random, stationary, Gaussian, with zero
mean and a standard deviation dependent on the noise level
selected. The electromyographic noise was obtained from a
real EMG record available from the MIT-BIH database and
its amplitude was adjusted to obtain the noise level required.

The performance of the alignment methods was evaluated
by the standard deviation σ of the alignment error, which is
inversely related with the cutoff frequency of an equivalent
lowpass filter of the averaged signal [8].

TABLE I
MEAN VALUE OF σ FOR TEMPORAL AND WAVELET ALIGNMENT METHODS

Noise White noise EMG noise
level (µV) σ Temp (ms) σ Wav (ms) σ Temp (ms) σ Wav (ms)

0 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000
20 0.067 0.013 0.094 0.004
30 0.331 0.124 0.341 0.082
40 0.590 0.257 0.589 0.227
50 0.821 0.347 0.883 0.379
60 1.056 0.468 1.232 0.548
70 1.326 0.559 1.660 0.740
80 1.587 0.660 2.283 0.998
90 1.915 0.783 3.576 1.382
100 2.200 0.931 5.805 1.915

The mean value of σ for all morphologies tested is
presented in Table 1 and in Figure 5 for a range of noise
levels of white and EMG noise for both temporal and wavelet
cross-correlation methods. It can be observed that the wavelet
method presents a lower alignment error compared with
temporal method for all levels of white or EMG noise.  This
improvement is particularly noticeable for high noise levels.

Fig. 5. Mean value of performance parameter σ for temporal
and wavelet alignment methods for records corrupted with

white noise and real EMG noise at different RMS noise levels.
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IV. DISCUSSION

The results indicate that the standard temporal cross-
correlation method works correctly for normal noise levels
(2-20 µV) of HRECG records with the patient completely at
rest. However, for higher levels noise (20-100µV) as were
found in ambulatory Holter signal-averaged systems [16], the
standard method introduces an important alignment error.
According to our results, the temporal method does not
satisfy the maximum allowed value of trigger jitter of 1 msec,
when the noise level increases over 50µV.

The trigger jitter of the proposed wavelet alignment method
is under the threshold for most of the simulated records
corrupted with white noise and for those corrupted with a
EMG noise up to 80µV. The reason that EMG noise causes
more difficulty than white noise for both methods is probably
due to its non-stationary characteristics, which tends to
corrupt some beats much more than others.

We have also observed that the alignment error not only
depends on noise level but also on the particular QRS
morphology and the peak-to-peak amplitude of the QRS
complex.

V. CONCLUSION

The use of recent digital Holter signal-averaged systems
motivates the development of alignment methods that are
more robust than the traditional temporal cross-correlation
method, due to the higher noise level of the records.

In this study, we have presented a new alignment method
based on the multi-scale cross-correlation between the
wavelet transform of a template beat and the detected beats.
The method estimates correctly the fiducial point in records
with low noise levels and produces a low alignment error in
records with high levels of white or EMG noise.

We concluded that the presented method is a promising
alignment technique for records with high noise levels.
Further investigations should be carried out to examine the
performance of this method in real Holter high-resolution
records.
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